Bladder permeability barrier: recovery from selective injury of surface epithelial cells.
نویسندگان
چکیده
The mammalian bladder maintains high electrochemical gradients between urine and blood, permitting the kidney to modify body chemistries through urinary excretion. To perform this function, the urothelium maintains a tight permeability barrier. When this barrier is damaged, leakage of urine components into the underlying bladder layers results, with symptoms of cystitis. In these studies, we develop a model of selective urothelial injury using protamine sulfate (PS) and define the process by which this epithelium recovers from damage. Exposure to PS (10 mg/ml), but not vehicle, caused a rapid fall in transepithelial resistance as well as striking increases in water and urea permeabilities. These changes were accompanied by necrosis and sloughing of sheets of umbrella cells, as seen by scanning and transmission electron microscopy. Over the 72 h after PS exposure, barrier function recovered, with transepithelial resistance and water and urea permeabilities returning to normal values. After loss of umbrella cells, the underlying intermediate cells underwent rapid maturation, as evidenced by increased expression of uroplakins and gradual formation of well-defined tight junctions. At day 5 after PS exposure, barrier function was restored and the surface cells exhibited normal-appearing tight junctions and normal labeling for uroplakins and zonula occludens 1. However, the cells remained smaller than umbrella cells until day 10 after exposure, when normal size was restored. These studies develop for the first time a controlled model of selective urothelial damage and demonstrate a characteristic process by which barrier function is restored and underlying intermediate cells develop into mature umbrella cells. This model will be useful in defining the mechanisms that regulate repair of urothelial damage.
منابع مشابه
Disruption of bladder epithelium barrier function after spinal cord injury.
Neural-epithelial interactions are hypothesized to play an important role in bladder function. We determined whether spinal cord injury (SCI) altered several indicators of urinary bladder epithelium barrier function, including continuity of the surface umbrella cell layer, transepithelial resistance (TER), and urea and water permeability. Within 2 h of SCI, significant changes in uroepithelium ...
متن کاملE-cadherin and transglutaminase-1 epithelial barrier restoration precedes type IV collagen basement membrane reconstruction following vocal fold mucosal injury.
The vocal fold epithelium is critical to upper airway immunologic defense and water/ion transport; therefore, any form of physical trauma or insult increases the vulnerability of this structure to functional impairment and pathogen invasion/infection. In this study, we examined the reestablishment of epithelial and basement membrane barrier structures in a well-established rat model of vocal fo...
متن کاملPG-mediated closure of paracellular pathway and not restitution is the primary determinant of barrier recovery in acutely injured porcine ileum.
Small bowel epithelium is at the frontline of intestinal barrier function. Restitution is considered to be the major determinant of epithelial repair, because function recovers in parallel with restitution after acute injury. As such, studies of intact mucosa have largely been replaced by migration assays of cultured epithelia. These latter studies fail to account for the simultaneous roles pla...
متن کاملDisruption of guinea pig urinary bladder permeability barrier in noninfectious cystitis.
Although most cell membranes permit rapid flux of water, small nonelectrolytes, and ammonia, the apical membranes of bladder epithelial umbrella cells, which form the bladder permeability barrier, exhibit strikingly low permeabilities to these substances. In cystitis, disruption of the bladder permeability barrier may irritate the bladder wall layers underlying the epithelium, causing or exacer...
متن کاملThe Site of the Stimulatory Action of Vasopressin on Sodium Transport in Toad Bladder
Vasopressin increases the net transport of sodium across the isolated urinary bladder of the toad by increasing the mobility of sodium ion within the tissue. This change is reflected in a decreased DC resistance of the bladder; identification of the permeability barrier which is affected localizes the site of action of vasopressin on sodium transport. Cells of the epithelial layer were impaled ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 283 2 شماره
صفحات -
تاریخ انتشار 2002